Some air movements are the result of the systematic pressure gradients that arise from latitudinal changes in the Earth’s
41.5 48.3 47.8C117.2 448 288 448 288 448s170.8 0 213.4-11.5c23.5-6.3 42-24.2 48.3-47.8 11.4-42.9 11.4-132.3 11.4-132.3s0-89.4-11.4-132.3zm-317.5 213.5V175.2l142.7 81.2-142.7 81.2z"/> Subscribe on YouTubeDMPQ- . How does pressure belt’s movement affect the formation of various climatic regions across the globe?
Air flowing from zones of high pressure to zones of low pressure causes winds, just like the way air gushes from a punctured tire or balloon. Uneven heating and convection generate the pressure differences; the same tendencies create currents in a saucepan of water heating on a stove. The difference in this case is that the convection currents that create winds take place on a far greater scale.
Because both small winds and larger pressure belts are driven by temperature differentials, changes in temperature at the surface can alter them. For example, ENSO (southern oscillation) events, such as El Nino and La Nina, include unseasonal alterations in ocean temperature that can magnify or decrease the strength of wind belts across the globe. Similarly, when centers of low pressure or high pressure move through an area, they can alter the flow of local wind and even create storms. Tropical cyclones come from low pressure zones in the tropics, and their powerful winds are some of the strongest on the planet.